Analysis of the Vertical Stiffness of Rolling Guide that Involves the Elastic Deformation of Carriage Skirt
نویسنده
چکیده
Static stiffness is an important indicator of the performance of a rolling guide, having direct influence on the stiffness and precision of computer numerically controlled (CNC) machine tools. After preloading the rolling guide, an outward elastic deformation is generated at the carriage skirt, which leads to a decrease in the static stiffness of the rolling guide. Therefore, there would be relatively large errors between the numerical results and the experimental results when the carriage is considered as a rigid body. In this paper, an analytical method for estimating the vertical stiffness of rolling guide was proposed, which took into account the elastic deformation in the carriage skirt. The contact elastic deformation model under loads was given using Hertz’s contact theory, from which the numerical results for the vertical stiffness of the surface of the rolling guide was calculated when the elastic deformation in the carriage skirt was ignored. The calculation method for the carriage skirt deformation was given using the finite element method, from which the numerical relationship between the deformation and the contact force was obtained after fitting adjustment. An analytical model was therefore established and took into account the elastic contact deformation and the carriage skirt deformation, and a universal calculation method was proposed for vertical stiffness. Experimental results show that compared to those not involving the deformation, the numerical results for vertical stiffness involving the carriage skirt deformation matched more closely with the experimental results, with relative errors no greater than 6.5%.
منابع مشابه
Ring Rolling FE Analysis in The Presence of the Guide Rolls
A new method (thermal spokes) is proposed to simulate the guide rolls in FE analysis of the ring rolling process. So far this method is the only one, capable of calculating guide rolls reaction contact forces related to the stiffness of their adjustment mechanism. The method is simple to use, does not introduce further nonlinearities and could be used in any kind of FE formulations. The method ...
متن کاملRing Rolling FE Analysis in The Presence of the Guide Rolls
A new method (thermal spokes) is proposed to simulate the guide rolls in FE analysis of the ring rolling process. So far this method is the only one, capable of calculating guide rolls reaction contact forces related to the stiffness of their adjustment mechanism. The method is simple to use, does not introduce further nonlinearities and could be used in any kind of FE formulations. The method ...
متن کاملNumerical Simulation of the Effect of Elastic Deformation of work rolls on the rolling force and Comparison with the Results obtained by the Slab Method during the reciprocating cold rolling
Cold rolling process of a major transformation in the form of sheet metal and a wide range of steel products are produced in this way. Elastic deformation during cold rolling working rollers and the inevitable increase in the rolling force. In this study, the effect of elastic deformation during cold rolling mill rollers working on the reciprocating back and forth in tandem with the presence of...
متن کاملNumerical Simulation of the Effect of Elastic Deformation of work rolls on the rolling force and Comparison with the Results obtained by the Slab Method during the reciprocating cold rolling
Cold rolling process of a major transformation in the form of sheet metal and a wide range of steel products are produced in this way. Elastic deformation during cold rolling working rollers and the inevitable increase in the rolling force. In this study, the effect of elastic deformation during cold rolling mill rollers working on the reciprocating back and forth in tandem with the presence of...
متن کاملDevelopment of a Predictive Finite Element Model For Investigation of Phases Behavior After Cold Rolling Process
One of the surface defects that arise in sheet metal working is when the part removes from the die. Since there are no external forces to make this defect, the origin of such fail is known as residual stress. Residual stress can develop in sheet metal forming due to non uniform deformation. In this paper, the workpiece is carbon steel with different volume fractions and arrangement of ferrite ...
متن کامل